Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(4): 1123-1135, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710491

RESUMO

Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.


Assuntos
Agmatina , Dor Crônica , Humanos , Ratos , Camundongos , Animais , Dor Crônica/terapia , Roedores/metabolismo , Agmatina/farmacologia , Receptores de N-Metil-D-Aspartato
2.
Neuropharmacology ; 160: 107690, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271770

RESUMO

Pain is among the most common symptoms in cancer and approximately 90% of patients experience end-stage cancer pain. The management of cancer pain is challenging due to the significant side effects associated with opioids, and novel therapeutic approaches are needed. MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores joined by a 22-atom spacer. MMG22 exhibited extraordinary analgesia following intrathecal administration in a mouse model of bone cancer pain. Here, we assessed the effectiveness of systemic administration of MMG22 in reducing cancer pain and evaluated whether MMG22 displays side effects associated with opioids. Fibrosarcoma cells were injected into and around the calcaneus bone in C3H mice. Mechanical hyperalgesia was defined as an increase in the paw withdrawal frequencies (PWFs) evoked by application of a von Frey monofilament (3.9 mN bending force) applied to the plantar surface of the hind paw Subcutaneous (s.c.), intramuscular (i.m.), and oral (p.o.) administration of MMG22 produced robust dose-dependent antihyperalgesia, whose ED50 was orders of magnitude lower than morphine. Moreover, the ED50 for MMG22 decreased with disease progression. Importantly, s.c. administration of MMG22 did not produce acute (24 h) or long-term (9 days) tolerance, was not rewarding (conditioned place preference test), and did not produce naloxone-induced precipitated withdrawal or alter motor function. A possible mechanism of action of MMG22 is discussed in terms of inhibition of spinal NMDAR via antagonism of its co-receptor, mGluR5, and concomitant activation of neuronal MOR. We suggest that MMG22 may be a powerful alternative to traditional opioids for managing cancer pain. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Assuntos
Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores Opioides mu/agonistas , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Hiperalgesia/tratamento farmacológico , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C3H , Morfina/uso terapêutico , Receptores de Ácido Caínico/administração & dosagem , Receptores Opioides mu/administração & dosagem
3.
Neuropharmacology ; 158: 107598, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30970233

RESUMO

Cisplatin and other widely employed platinum-based anticancer agents produce chemotherapy-induced peripheral neuropathy (CIPN) that often results in pain and hyperalgesia that are difficult to manage. We investigated the efficacy of a novel bivalent ligand, MCC22, for the treatment of pain arising from CIPN. MCC22 consists of mu opioid receptor (MOR) agonist and chemokine receptor 5 (CCR5) antagonist pharmacophores connected through a 22-atom spacer and was designed to target a putative MOR-CCR5 heteromer localized in pain processing areas. Mice received once daily intraperitoneal (i.p.) injections of cisplatin (1 mg/kg) for seven days and behavior testing began 7 days later. Cisplatin produced mechanical hyperalgesia that was decreased dose-dependently by MCC22 given by intrathecal (ED50 = 0.004 pmol) or i.p. (3.07 mg/kg) routes. The decrease in hyperalgesia was associated with decreased inflammatory response by microglia in the spinal cord. Unlike morphine, MCC22 given daily for nine days did not exhibit tolerance to its analgesic effect and its characteristic antihyperalgesic activity was fully retained in morphine-tolerant mice. Furthermore, MCC22 did not alter motor function and did not exhibit rewarding properties. Given the exceptional potency of MCC22 without tolerance or reward, MCC22 has the potential to vastly improve management of chronic pain due to CIPN. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Assuntos
Analgésicos Opioides/farmacologia , Antineoplásicos/toxicidade , Antagonistas dos Receptores CCR5/farmacologia , Cisplatino/toxicidade , Hiperalgesia/induzido quimicamente , Isoquinolinas/farmacologia , Neuralgia/induzido quimicamente , Nociceptividade/efeitos dos fármacos , Piperidinas/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Receptores Opioides mu/agonistas
4.
J Biol Chem ; 291(38): 19725-19733, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27432886

RESUMO

Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics.


Assuntos
Antidepressivos/farmacologia , Cromograninas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Microdomínios da Membrana/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Linhagem Celular Tumoral , Cromograninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Microdomínios da Membrana/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Sistemas do Segundo Mensageiro/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...